organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Akira Onoda, Taka-aki Okamura, Hitoshi Yamamoto and Norikazu Ueyama*

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail: ueyama@chem.sci.osaka-u.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.052 wR factor = 0.136 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,6-Bis(triphenylacetylamino)phenol

In the title compound, $C_{46}H_{36}N_2O_3$, very bulky triphenylmethyl groups interfere with intermolecular interactions; intramolecular hydrogen bonds $N-H\cdots O-H\cdots O=C$ between the phenol and two amide groups are observed in the structure. Received 19 May 2003 Accepted 1 July 2003 Online 31 July 2003

Comment

Hydrogen-bond networks, one of the non-covalent motifs, have been employed as synthetic paradigms to rationally design crystal structures. Most interesting network structures have been reported combining intermolecular N-H···O and $O-H \cdots O$ hydrogen bonds, and other donor-acceptor pairs (Holman et al., 2001; Noveron et al., 2002; Nguyen et al., 2001; Tanaka et al., 2002; Mak & Xue, 2002). We have especially focused on N-H···O hydrogen bonds with various oxo acids as acceptors, such as carboxylic acids, phosphoric acids and sulfonic acids (Ueyama et al., 1999; Onoda et al., 2001; Onoda, Yamada, Okamura, Yamamoto & Ueyama, 2002; Onoda, Yamada, Okamura, Doi et al., 2002). Thus, we have constructed a series of bulky amides with which to examine the formation of such hydrogen bonds and have determined the properties of their intramolecular hydrogen bonds. A detailed knowledge of intramolecular hydrogen bonds will provide basic information for crystal engineering. Here, we report that we have synthesized the title compound, (I), and structurally characterized the hydrogen-bond geometry.

In (I), very bulky triphenylmethyl groups interfere with intermolecular interactions; only intramolecular hydrogen bonds between the two amide groups and a phenol OH group are observed in the structure (Fig. 1 and Table 1). One amide moiety (N1-H1) is directed towards atom O3, indicating the presence of an intramolecular N-H···O hydrogen bond. The angle between the N1-amide plane and the C11-C16 aromatic ring plane is 8.67 (5)° and the other amide group participates in O-H···O=C hydrogen bonds with a phenol OH group. Actually, the N2-amide plane is twisted from the C11-C16 plane by an angle of 36.91 (5)° in order to form a seven-membered hydrogen-bonded ring.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), showing the labeling of selected non-H atoms and 30% probability displacement ellipsoids.

Figure 2

CPK drawing of the molecular structure of (I). Key: red (O), blue (N), black (C) and white (H).

The IR spectrum of (I) in the solid state (KBr pellet) shows that the OH band appears at 3458 cm⁻¹, shifted down from the free OH region. The NH bands are observed at around 3390 cm^{-1} as an overlapped signal. Thus, the intramolecular N-H...O hydrogen bond to the phenolic OH is very weak. The ¹H NMR measurement in CDCl₃ solution (10 mM) shows that the amide NH signal appears at 9.11 p.p.m. at 303 K. Thus, the asymmetric orientation of the two amide groups undergo fast exchange in solution.

Experimental

The synthesis of (I) was reported previously (Onoda, Yamada, Okamura, Doi et al., 2002). Crystals were obtained from a hot acetonitrile solution by slow cooling.

Crystal data

a a	► 10000 -3		
$C_{46}H_{36}N_2O_3$	$D_x = 1.255 \text{ Mg m}^{-3}$		
$M_r = 664.77$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/c$	Cell parameters from 19635		
a = 13.910 (4) Å	reflections		
b = 13.425 (4) Å	$\theta = 3.7 - 55^{\circ}$		
c = 19.074 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$		
$\beta = 99.074 \ (19)^{\circ}$	T = 296 K		
$V = 3517.3 (18) \text{ Å}^3$	Prism, colorless		
Z = 4	$0.10 \times 0.10 \times 0.10$ mm		

Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer ω scans	7998 independent reflections 3722 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$\theta_{\max}^{m} = 27.5^{\circ}$ $h = -18 \rightarrow 16$ h = 17
$T_{\min} = 0.383$, $T_{\max} = 0.992$ 34 653 measured reflections	$k = -17 \rightarrow 17$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.136$ S = 0.86	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0697P)^2]$
7998 reflections 469 parameters	where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \phi_{\text{max}} = 0.16 \text{ e} $

Table 1 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O3	0.87 (2)	2.16 (2)	2.607 (2)	112 (2)
O3-H3···O2	0.86 (2)	1.78 (2)	2.604 (2)	159 (2)

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

The positional parameters of H atoms bonded to N and O atoms were refined. The N-H and O-H bond lengths are 0.86(2)-0.87(2)and 0.86 (2) Å, respectively. The H atoms bonded to C atoms were positioned geometrically and were treated as riding on their parent atoms, with C-H bond distances of 0.93 Å.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN and MERCURY (Bruno et al., 2002); software used to prepare material for publication: TEXSAN and MERCURY.

Support of this work by a JSPS Fellowship [for AO; grant 2306(1999-2002)] and a Grant-in-Aid for Scientific Research on Priority Area (A) (No. 10146231) from the Ministry of Education, Science, Sports and Culture, Japan, is gratefully acknowledged.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Holman, K. T., Martin, S. M., Parker, D. P. & Ward, J. D. (2001). J. Am. Chem. Soc. 123, 4421-4431.
- Mak, T. C. W. & Xue, F. (2002). J. Am. Chem. Soc. 122, 9860-9861.
- Molecular Structure Corpration (1991). MSC/AFC Diffractometer Control Software, MSC, 3200 Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1999). TEXSAN, Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057-11064.
- Noveron, J. C., Lah, M. S., Del Sesto, R. E., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613-6625.
- Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.

- Onoda, A., Yamada, Y., Okamura, T., Yamamoto, H. & Ueyama, N. (2002). Inorg. Chem. 41, 6038–6047.
- Onoda, A., Yamada, Y., Okamura, T., Doi, M., Yamamoto, H. & Ueyama, N. (2002). J. Am. Chem. Soc. **124**, 1052–1059.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Tanaka, T., Tasaki, T. & Aoyama, Y. (2002). J. Am. Chem. Soc. 124, 12453–12462.
- Ueyama, N., Takeda, J., Yamada, Y., Onoda, A., Okamura, A. & Nakamura, A. (1999). *Inorg. Chem.* **38**, 475–478.